quarta-feira, 14 de junho de 2017

Qubits fabricados no diamante com precisão nanométrica Redação do Site Inovação Tecnológica -

Qubits fabricados no diamante com precisão nanométrica

Qubits fabricados no diamante com precisão nanométrica
[Imagem: Tim Schröder et al. - 10.1038/ncomms15376]
Bits no diamante
É cada vez maior a chance de que os computadores quânticos tenham corpo e alma de diamante.
Como é muito difícil lidar com os bits quânticos, várias equipes ao redor do mundo estão trabalhando com diferentes tipos de qubits - atualmente, os qubits supercondutores e os qubits de diamante são os mais promissores, embora a computação quântica no silício também esteja avançando rápido.
Agora, uma equipe do MIT, da Universidade de Harvard e dos Laboratórios Sandia, todos nos EUA, desenvolveram um processo para fabricar os qubits dentro dos nanodiamantes de uma forma muito precisa - nos primeiros protótipos, os qubits ficam a apenas 50 nanômetros de distância, em média, do alvo pretendido.
Fabricar o circuito, depois gravar o qubit
Os qubits de diamante consistem na verdade em defeitos no interior do diamante, defeitos estes conhecidos como vacâncias, quando um átomo de carbono da estrutura cúbica do diamante é substituído por outro átomo - o qubit consiste na orientação magnética dos elétrons "soltos" nesse defeito.
Embora as vacâncias mais estudadas sejam as de nitrogênio, elas podem ser de qualquer átomo que possa funcionar como dopante no diamante. Tim Schroder e seus colegas usaram vacâncias de silício, que emitem luz em uma faixa de frequências mais estreita e não requerem o resfriamento criogênico dos defeitos de nitrogênio - essas vacâncias também são conhecidas como centros de cor.
Ocorre que essas emissões de luz são extremamente tênues. Para seu uso prático como bit quântico é necessário amplificá-las, dirigi-las e então recombiná-las para executar os cálculos.
É por isso que é importante posicionar esses defeitos com precisão: é mais fácil traçar os circuitos ópticos no nanodiamante e depois inserir os qubits nos locais corretos do que localizar qubits aleatoriamente posicionados e depois construir os circuitos ópticos ao redor deles.
Para demonstração da técnica, a equipe usou um filme fino de diamante com 200 nanômetros de espessura, no qual foram entalhadas cavidades ópticas para aumentar a luz emitida pelos qubits. Cada cavidade óptica recebeu então de 20 a 30 íons de silício. Um tratamento térmico final deu mobilidade a essas vacâncias, o que deixou os qubits a, em média, apenas 50 nanômetros de distância da posição ideal, mas já dentro de posições válidas para operação do circuito previamente gravado.
A equipe espera que novos aprimoramentos da técnica deem resultados ainda melhores.

Bibliografia:

Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures
Tim Schröder, Matthew E. Trusheim, Michael Walsh, Luozhou Li, Jiabao Zheng, Marco Schukraft, Alp Sipahigil, Ruffin E. Evans, Denis D. Sukachev, Christian T. Nguyen, Jose L. Pacheco, Ryan M. Camacho, Edward S. Bielejec, Mikhail D. Lukin, Dirk Englund
Nature Communications
Vol.: 8, Article number: 15376
DOI: 10.1038/ncomms15376

Nenhum comentário:

Postar um comentário